
项目二：URDF 移动机器人及 MoveIt!机械臂控制

第二部分： 使用 MoveIt!控制机器人

1. Introduction to MoveIt!

Moveit is a sophisticated piece of software written on top of ROS for achieving inverse

kinematics, motion or path planning, 3D perception of the environment, collision

checking, and so on. It is the primary source of functionality for manipulation in ROS.

Moveit understands a robot arm configuration (geometry and link information)

through urdf and ROS message definitions and utilizes the ROS visualizing (RViz) tool

to perform manipulation.

Moveit is used in more than 100 robot arms and you can find more information about

those robots here: https://moveit.ros.org/robots/. Moveit has lots of advanced features

and is used by many industrial robots as well. Covering all the Moveit! concepts is out

of the scope of this course, we shall only look at it from the engineering and application

point of view, and what we need to move and control our robot arm. The following is

the architecture of Moveit!.

 Figure 1: MoveIt Architecture

Here, we have the most important component, that is, the move_group node, which is

responsible for putting all other components together to provide the user with

https://moveit.ros.org/robots/

necessary actions and service calls to use. The user could interface by using a simple

scripting interface (for beginners) called the moveit_commander interface, a C++

wrapper called move_group_interface, a Python interface written on top of

move_it_commander, or the GUI interface using an RViz plugin. The move_group node

would need the robot information that is defined through URDF, as well as configuration

files. Moveit understands the robot in a format called SRDF (semantic robot description

format) that Moveit converts into URDF while setting up the robot arm. Also, the

move_group node understands the robot arm's joint states and talks back via the

FollowJointTrajectoryAction client interface. For more information about MoveIt! please

see: https://moveit.ros.org/documentation/concepts/.

2. Install and configure MoveIt for our mobile robot

Installing and configuring Moveit is a multistep process. Let's begin by learning how to

install it.

2.1 Installing Moveit

$ sudo apt install ros-melodic-moveit

$ sudo apt-get install ros-melodic-moveit-setup-assistant

$ sudo apt-get install ros-melodic-moveit-simple-controller-manager

$ sudo apt-get install ros-melodic-moveit-fake-controller-manager

Once they're all installed, we can begin configuring our robot using a Moveit setup

assistant wizard.

2.2 Configuring the MoveIt setup assistant wizard

This wizard is very useful, particularly because it helps us save time. Some of the things

that we can do with this wizard are as follows:

⚫ Define collision zones for our robot arm

⚫ Set custom poses

⚫ Choose the necessary kinematics library

⚫ Define ROS controllers

⚫ Create the necessary simulation files

We can invoke the setup assistant using the following command:

$ roslaunch moveit_setup_assistant setup_assistant.launch

https://moveit.ros.org/documentation/concepts/

You should see the window shown here:

 Figure 2: MoveIt setup assistant wizard

Now, let's look into the configuration steps, one by one.

2.2.1 Loading the robot model

Let's configure our robot in Moveit by selecting the respective robot URDF. We do that

by clicking Create New Moveit Configuration Package, loading our robot URDF,

mobile_manipulator.urdf, and selecting Load Files. You should see a success message,

along with our robot in the right-hand pane:

 Figure 3: MoveIt loading success

Now, let's set up the components on the left-hand pane.

2.2.2 Setting up self-collisions

Click on Self-Collisions on the left pane and select Generate Collision Matrix. Here, you

can set the sampling density high if you wish to move the robot arm in a more confined

space. This may increase the planning time for the robot to execute a trajectory and may

sometimes fail execution due to a collision assumption.

2.2.3 Setting up planning groups

Let's set up planning groups by following these steps:

1. In Planning Groups, add our robot arm group by selecting Add Group.

2. Name our group arm.

3. Select Kinematic Solver as kdl_kinematics_plugin/KDLKinematicsPlugin. Set the

resolution and timeout as the default values.

4. Select RRTStar as our Planner.

5. Now, add our robot arm joints and click Save.

Your final window should look as follows:

 Figure 4: MoveIt planning groups

Once the arm group has been set, we can set the poses for the arm.

2.2.4 Setting up arm poses

Now, let's define the robot poses. Click Add Pose and add the following poses in the

following format (Posename : arm_base_joint, shoulder_joint, bottom_wrist_joint,

elbow_joint, top_wrist_joint):

⚫ Straight: 0.0, 0.0, 0.0, 0.0, 0.0

⚫ Home: 1.5708, 0.7116, 1.9960, 0.0, 1.9660

Figure 5: Robot arm pose

We don't have an end effector, so we can skip this step

2.2.5 Setting up passive joints

Now, let's define the Passive Joints—those whose joint states are not expected to be

published:

 Figure 6: MoveIt passive joints

Now, it's time to check the ROS controllers we set up with the robot URDF.

2.2.6 Setting up ROS controllers

Now, we need to connect our robot with Moveit for manipulation through the ROS

controllers we defined. Click ROS control, then click Auto Add FollowJointsTrajectory

Controllers For Each Planning Group. You should see the controller being automatically

ported in, as shown here:

 Figure 7: MoveIt setup ROS controllers

The FollowJointTrajectory plugin we had called upon in our plugin is shown in the

preceding screenshot. Now, let's finalize the Moveitconfig package.

2.2.7 Finalizing the MoveitConfig package

The next step will autogenerate a URDF for simulation:

1. In case you made any changes, these changes will be highlighted in green. We can

skip this step as we didn't change anything.

2. We don't need to define a 3D sensor, so skip this step as well.

3. Add any appropriate information in the Author Information tab.

4. The final step is the Configuration Files, where you will see a list of files that have been

generated. The window is as follows:

 Figure 8: Configuration files

5. Give a configuration name such as robot_description_moveit_config, click on Generate

Package, and exit the setup assistant.

Now, let's control the robot arm using Moveit.

3. Controlling robot arm using MoveIt!

Once Moveit has been configured, we can test our robot arm manipulation using the

GUI interface (RViz plugin):

1. Launch the mobile manipulator in Gazebo:

$ source devel/setup.bash

$ roslaunch my_robot mobile_manipulator_gazebo_xacro.launch

2. In a new Terminal, open the move_group.launch file that was auto-generated by the

Moveit setup assistant wizard:

$ source devel/setup.bash

$ roslaunch robot_description_moveit_config move_group.launch

Your Terminal's output would be similar to what's shown in the following screenshot:

 Figure 9: move_group.launch

3. Now, let's open RViz to control the robot's motion:

$ source devel/setup.bash

$ roslaunch robot_description_moveit_config movit_rviz.launch config:=True

 You should see the following window.

 Figure 10: rviz MoveIt launch

4. Go to the Planning tab, select home in Goal State, and click on Plan. You should see

a visual of the robot arm planning (moving) to the target position.

Congratulations! Now you know how to build a robot using URDF/XACRO, configure and

control it using MoveIt! That’s a great achievement.

